Putrescine transport in a cyanobacterium Synechocystis sp. PCC 6803.
نویسندگان
چکیده
The transport of putrescine into a moderately salt tolerant cyanobacterium Synechocystis sp. PCC 6803 was characterized by measuring the uptake of radioactively-labeled putrescine. Putrescine transport showed saturation kinetics with an apparent K(m) of 92 +/- 10 microM and V(max) of 0.33 +/- 0.05 nmol/min/mg protein. The transport of putrescine was pH-dependent with highest activity at pH 7.0. Strong inhibition of putrescine transport was caused by spermine and spermidine whereas only slight inhibition was observed by the addition of various amino acids. These results suggest that the transport system in Synechocystis sp. PCC 6803 is highly specific for polyamines. Putrescine transport is energy-dependent as evidenced by the inhibition by various metabolic inhibitors and ionophores. Slow growth was observed in cells grown under salt stress. Addition of low concentration of putrescine could restore growth almost to the level observed in the absence of salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased putrescine transport with an optimum 2-fold increase at 20 mosmol/kg. The stimulation of putrescine transport mediated by osmotic upshift was abolished in chloramphenicol-treated cells, suggesting possible involvement of an inducible transport system.
منابع مشابه
Characterization of spermidine transport system in a cyanobacterium,synechocystis sp. PCC 6803.
The transport of spermidine into a cyanobacterium, Synechocystis sp. PCC 6803, was characterized by measuring the uptake of 14C-spermidine. Spermidine transport was shown to be saturable with an apparent affinity constant (Km) value of 67 microM and a maximal velocity (Vmax) value of 0.45 nmol/min/mg protein. Spermidine uptake was pHdependent with the pH optimum being 8.0. The competition exper...
متن کاملFLAVODIIRON2 and FLAVODIIRON4 proteins mediate an oxygen-dependent alternative electron flow in Synechocystis sp. PCC 6803 under CO2-limited conditions.
This study aims to elucidate the molecular mechanism of an alternative electron flow (AEF) functioning under suppressed (CO2-limited) photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthetic linear electron flow, evaluated as the quantum yield of photosystem II [Y(II)], reaches a maximum shortly after the onset of actinic illumination. Thereafter, Y(II) transiently decrea...
متن کاملThioredoxin peroxidase in the Cyanobacterium Synechocystis sp. PCC 6803.
The amino acid sequence deduced from the open reading frame designated sll0755 in Synechocystis sp. PCC 6803 is similar to the amino acid sequences of thioredoxin peroxidases from other organisms. In the present study, we found that a recombinant SLL0755 protein that was expressed in Escherichia coli was able to reduce H2O2 and tertiary butyl hydroperoxide with thioredoxin from E. coli as the e...
متن کاملExploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803
BACKGROUND The unicellular cyanobacterium Synechocystis sp. PCC 6803 has been widely used as a photoautotrophic host for synthetic biology studies. However, as a green chassis to capture CO2 for biotechnological applications, the genetic toolbox for Synechocystis 6803 is still a limited factor. RESULTS We systematically characterized endogenous genetic elements of Synechocystis 6803, includin...
متن کاملFinished Genome Sequence of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC 6714
Synechocystis sp. strain PCC 6714 is a unicellular cyanobacterium closely related to the popular model organism Synechocystis sp. strain PCC 6803. A combination of PacBio SMRT and Illumina GAIIx data results in a highly accurate finished genome sequence that provides a reliable resource for further comparative analyses.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biochemistry and molecular biology
دوره 39 4 شماره
صفحات -
تاریخ انتشار 2006